A Chebyshev Quadrature Rule for One Sided Finite Part Integrals
نویسندگان
چکیده
منابع مشابه
Gauss-chebyshev Quadrature Formulae for Strongly Singular Integrals
This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...
متن کاملMonotonicity Results for a Compound Quadrature Method for Finite-part Integrals
Given a function f ∈ C[0, 1] and some q ∈ (0, 1), we look at the approximation for the Hadamard finite-part integral = ∫ 1 0 x−q−1f(x)dx based on a piecewise linear interpolant for f at n equispaced nodes (i.e., the product trapezoidal rule). The main purpose of this paper is to give sufficient conditions for the sequence of approximations to converge against the correct value of the integral i...
متن کاملA Sinc-hunter Quadrature Rule for Cauchy Principal Value Integrals
A Sine function approach is used to derive a new Hunter type quadrature rule for the evaluation of Cauchy principal value integrals of certain analytic functions. Integration over a general arc in the complex plane is considered. Special treatment is given to integrals over the interval (-1, 1). It is shown that the quadrature error is of order 0(e~ ), where N is the number of nodes used, and w...
متن کاملTwo Point Gauss–legendre Quadrature Rule for Riemann–stieltjes Integrals
In order to approximate the Riemann–Stieltjes integral ∫ b a f (t) dg (t) by 2–point Gaussian quadrature rule, we introduce the quadrature rule ∫ 1 −1 f (t) dg (t) ≈ Af ( − √ 3 3 ) + Bf (√ 3 3 ) , for suitable choice of A and B. Error estimates for this approximation under various assumptions for the functions involved are provided as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2001
ISSN: 0021-9045
DOI: 10.1006/jath.2001.3572